GEOMETRY POSTULATES AND THEOREMS

Postulate 1: Through any two points, there is exactly one line.
Postulate 2: The measure of any line segment is a unique positive number. The measure (or length) of $\overline{A B}$ is a positive number, AB .

Postulate 3: If X is a point on $\overline{A B}$ and $\mathrm{A}-\mathrm{X}-\mathrm{B}(\mathrm{X}$ is between A and B), then $\mathrm{AX}+\mathrm{XB}=\mathrm{AB}$

Postulate 4: If two lines intersect, then they intersect in exactly one point
Postulate 5: Through any three noncollinear points, there is exactly one plane.
Postulate 6: If two planes intersect, then their intersection is a line. +
Postulate 7: If two points lie in a plane, then the line joining them lies in that plane.

Theorem 1.1: The midpoint of a line segment is unique.
Postulate 8: The measure of an angle is a unique positive number.
Postulate 9: If a point D lies in the interior of angle $\angle \mathrm{ABC}$,

$$
\text { then } \mathrm{m} \angle \mathrm{ABD}+\mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ABC}
$$

Theorem 1.4.1: There is one and only one angle bisector for any given angle.

Definition: "Officially", Perpendicular lines are two lines that meet to form congruent adjacent angles.

Theorem 1.6.1:
If two lines are perpendicular, then they meet to form right angles.

Theorem 1.7.1:
If two lines meet to form a right angle, then these lines are perpendicular.

Theorem 1.7.2: If two angles are complementary to the same angle (or to congruent angles) then these angles are congruent
If two angles are complementary to the same angle, then these angles are congruent.
Given: $\angle 1$ is comp, to $\angle 3$
$\angle 2$ is comp, to $\angle 3$
Prove: $\quad \angle 1 \cong \angle 2$

Theorem 1.7.3: If two angles are supplementary to the same angle (or to congruent angles, then the angles are congruent.

```
If two angles are supplementary to the same angle, then
these angles are congruent.
Given: }\angle1\mathrm{ is supp, to }\angle
    \angle3 is supp. to }\angle
Prove: }\angle1\cong\angle
(HINT:See Exercise 25 for help.)
```


Theorem 1.7.4: Any two right angles are congruent.
Given: $\angle \mathrm{ABC}$ is a right angle.
$\angle \mathrm{DEF}$ is a right angle.
Prove: $\angle \mathrm{ABC} \cong \angle \mathrm{DEF}$

Theorem 1.7.5: If the exterior sides of two adjacent angles form perpendicular rays, then theses angles are complementary.

```
If the exterior sides of two adjacent acute angles form
perpendicular rays, then these angles are complementary.
Given:}\quad\vec{BA}\perp\vec{BC
Prove: }\angle1\mathrm{ is comp, to }\angle
    S
```

Theorem 2.1.1: From a point not on a given line, there is exactly one line perpendicular to the given point.

To construct this unique line with a compass, go to http://www.mathopenref.com/constperpextpoint.html

Postulate 10: (Parallel Postulate) Through a point not on a line, exactly one line is parallel to the given line.

Postulate 11: (Corresponding Angles Postulate)
If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

To construct this unique line with a compass, go to http://www.mathopenref.com/constparallel.html
Linear Pair Postulate If two angles form a
linear pair, then the measures of the angles
add up to 180°.
Vertical Angles Postulate If two angles are
vertical angles, then they are congruent
(have equal measures).
Parallel Lines Postulate
Through a point not on a line, exactly one line
is parallel to that line.
To construct this unique line with a compass,
go to
http://www.mathopenref.com/constparallel.htm
Consecutive Interior Angles Theorem
If two parallel lines are cut
by a transversal, then alternate interior angles
are supplementary.
Corresponding Angles Postulate, or CA
Postulate If two parallel lines are cut by a
Aransversal, then corresponding angles are
congruent. (Lesson 2.6)
AEA Theorem If two parallel lines are cut
are congruent.

Consecutive Exterior Angles Theorem If two parallel lines are cut by a transversal, then alternate exterior angles are supplementary.	
Parallel Lines Theorems If two parallel lines are cut by a transversal, then corresponding angles are congruent, alternate interior angles are congruent, and alternate exterior angles are congruent. (Lesson 2.6)	
Converse of the Parallel Lines Theorems If two lines are cut by a transversal to form pairs of congruent corresponding angles, congruent alternate interior angles, or congruent alternate exterior angles, then the lines are parallel. (Lesson 2.6)	
Three Parallel Lines Theorem If two lines are parallel to a third line, then they are parallel to each other.	
2 Lines \perp to a Third Line Theorem If two coplanar lines are perpendicular to a third line, then they are parallel to each other	

Triangles
(no sides the same)
The sum of the measures of the
angles in every triangle is
180

